4 Apr 2016

T 0915/10 - Soybean

Key points

  • A claim directed to a soybean plant obtainable by crossing a plant obtained from a specific deposited soybean seed and another plant, is not excepted from patentability. 
  • Inventive step of the embodiment wherein the soybean plant is heterozygous, is based on an analogy with chemical intermediates:  " In view of the fact that the heterozygous plants carry the haplotype responsible for improved yield potential, they at least make a structural and functional contribution to the subsequent (inventive) homozygous plants, i.e. to the solution of the objective technical problem (cf. decision T 65/82, OJ EPO 1983, 327, concerning chemical intermediates, see Headnotes). The reasons for recognition of inventive step for the homozygous plants therefore apply mutatis mutandis to heterozygous plants."


EPO T 0915/10 - [C] - link
VIII. The claims of the final main request read:
"1. A soybean plant, a seed, progeny plant of any generation or part thereof, the genome thereof containing SEQ ID NO:9, wherein the plant is obtainable by crossing a plant obtained from soybean seed deposited under ATCC accession number PTA-6708 and another plant.
2. The soybean plant part of claim 1, which is defined as a cell, pollen, ovule, flower, shoot, root, or leaf.
3. A method of producing a soybean plant tolerant to glyphosate herbicide as defined in claim 1, which method comprises introducing SEQ ID NO:9 into the genome of said plant by transformation of plant cells with heterologous DNA.
4. A DNA molecule comprising SEQ ID NO:9."


Reasons for the Decision
Introduction to the invention
1. The invention concerns soybean plants which have been genetically modified so as to make them tolerant to the herbicide glyphosate. In plants, the phytotoxin glyphosate inhibits the enzyme 5-enolpyruvyl-3-phosphoshikimate synthase (EPSPS) in the shikimic acid pathway, which provides a precursor for the synthesis of aromatic amino acids. For the purpose of the invention, tolerance to glyphosate was achieved by the introduction into the plant genome of a modified gene encoding a variant of EPSPS having a low affinity for glyphosate by means of an Agrobacterium tumefaciens based transformation system. The gene was transferred to the soybean genome between the left and right borders of the Ti plasmid transfer DNA (T-DNA).
2. During Agrobacterium mediated transformation of plant cells, the T-DNA may be inserted at any location in the plant genome, the chromosomal position of this insertion being random and hence unpredictable. In the art, each independent insertion is termed a transgenic "event". The chromosomal location of a T-DNA insertion is reflected in the sequence of the DNA spanning the junctions between the insert and the soybean genome immediately flanking the insert.
3. The invention concerns soybean plants which have been derived from a cell containing such an event and which contain in their genome the particular transgenic insertion event MON89788, which as a result, inter alia, of its chromosomal position is responsible for a good expression of the EPSPS gene, leading to good tolerance to glyphosate. The sequences spanning the junctions of the MON89788 insert and the soybean genome are represented by SEQ ID NOs: 1 and 3 (left junction) and 2 and 4 (right junction). SEQ ID NO: 9 represents the entire inserted DNA along with some flanking soybean genomic sequences.
Obviousness
[...] 26. [...] The fact that in the plants of the invention the T-DNA insertion is closely linked to and therefore acts as a (selection) marker for improved yield was not predictable and would have been regarded as an element of surprise by the skilled person (cf. decision T 775/08 of 1 February 2011, points 12 to 12.4 of the reasons and of decision T 2239/08 of 10 January 2013, point 19 of the reasons).
27. Both soybean plants homozygous (homozygous plants) and plants heterozygous (heterozygous plants) for the MON89788 event are subject-matter of claim 1. It could therefore be argued that, contrary to the homozygous plants, the heterozygous plants might not benefit from the "element of surprise" referred to above, because the relevant haplotype providing the high yield potential is paired with a different haplotype in such plants.
28. The board notes however that the skilled person seeking to introgress the MON89788 event together with the haplotype responsible for improved yield potential into populations of soybean other than variety A3244, would have to cross the soybean plants containing the MON89788 event with plants of the target population. This would inevitably generate heterozygous plants as an essential intermediate product. In view of the fact that the heterozygous plants carry the haplotype responsible for improved yield potential, they at least make a structural and functional contribution to the subsequent (inventive) homozygous plants, i.e. to the solution of the objective technical problem (cf. decision T 65/82, OJ EPO 1983, 327, concerning chemical intermediates, see Headnotes). The reasons for recognition of inventive step for the homozygous plants therefore apply mutatis mutandis to heterozygous plants.
29. In view of the above considerations, the board concludes that the soybean plants of claim 1 (including the seed and progeny plants of any generation) were not obvious to the skilled person having regard to the state of the art.
[...]
Patentability
Article 53(b) EPC - Plant varieties
Claims 1 and 2
37. Subject-matter of claims 1 and 2 are soybean plants, where the term "soybean" is used in the art as a synonym for the plant species Glycine max, i.e. the cultivated soybean (see application as filed, page 1, line 16). "Species" is the botanical taxon of the rank falling below the taxon "genus". The population of plants that constitutes a plant species includes within it, inter alia, sub-groupings known as plant varieties, as defined in Rule 26(4) EPC.
38. The herbicide tolerant soybean plants as subject-matter of claims 1 and 2 (including those plant parts that can be used to regenerate whole plants) are particularly characterised by the fact that they contain the T-DNA insert and a closely linked portion of the adjoining soybean chromosome characteristic of event MON89788 (see point 3. above). This structural feature provides these plants with an improved yield potential compared to soybean plants containing event 40-3-2 (see points 23. to 26. above).
39. Thus, the claimed group of plants embraces all the (indefinite number of) individual plants as defined by the presence of event MON89788 (cf. decision G 1/98, OJ EPO 2000, 111, point 3.1 of the reasons, last paragraph, and decision T 1242/06, OJ EPO 2013, 42, points 25 to 39 of the reasons). The board is therefore satisfied that the plants as claimed are not defined "by the expression of the characteristics that results from a given genotype or combination of genotypes" (i.e. by the entire constitution of a plant or a set of genetic information, cf. Rule 26(4) EPC).
40. While the deposited seeds referred to in claim 1 may constitute a plant variety due to the fixed genetic background of the variety A3244 (see document D11, page 1, paragraph 3), these deposited seeds are not however individually claimed, although they do fall within the ambit of the claim.
41. In view of the above considerations, the board is of the view that the plants as defined by claim 1 do not constitute a plant variety, as defined in Rule 26(4) EPC. This consideration applies mutatis mutandis to the subject-matter of claim 2. Moreover, the technical feasibility of the invention of claims 1 and 2 with respect to improved yield is not confined to one plant variety or group of plant varieties, but applies to soybean plants in general.
42. Accordingly, the board is satisfied that the subject-matter of claims 1 and 2 does not constitute a plant variety or varieties and is thus not excepted from patentability by virtue of Article 53(b) EPC in combination with Rule 27(b) EPC.
Article 53(b) EPC - Essentially biological processes for the production of plants
Claim 3
43. Claim 3 is directed to a method for producing a soybean plant tolerant to glyphosate herbicide as defined in claim 1. Pursuant to Article 53(b) EPC (non-microbiological) essentially biological processes for the production of plants are excepted from patentability. Accordingly, it needs to be assessed whether or not the method of claim 3 is excluded from patentability.
44. The Enlarged Board of Appeal has dealt in detail with the process exclusion of Article 53(b) EPC in the consolidated decisions G 2/07 and G 1/08 (OJ EPO 2012, 130 and 206, respectively).
45. The processes for the production of plants considered by this board (albeit in a different composition) in referring decision T 83/05 (OJ EPO 2007, 644, leading to decision G 2/07, supra) and in referring decision T 1242/06 (OJ EPO 2008, 523, leading to decision G 1/08, supra) were plant breeding processes and the claims explicitly mentioned process steps of sexually crossing and (subsequent) selection of plants.
46. The Enlarged Board of Appeal held that plant breeding processes "were characterised by the fact that the traits of the plants resulting from the crossing were determined by the underlying natural phenomenon of meiosis. This phenomenon determined the genetic make-up of the plants produced, and the breeding result was achieved by the breeder's selection of plants having the desired trait(s)" (see decision G 2/07, supra, point 6.4.2.3 of the reasons; the full paragraph on page 199).
47. In summary, the Enlarged Board of Appeal concluded, in the context of claims for methods explicitly mentioning process steps of sexually crossing and (subsequent) selection of plants that "[a] non-microbiological process for the production of plants which contains or consists of the steps of sexually crossing the whole genomes of plants and of subsequently selecting plants [was] in principle excluded from patentability as being "essentially biological" within the meaning of Article53(b) EPC" (see decision G 2/07, supra, Headnote, Answer 1).
48. The subject-matter of claim 3 is a method for the production of a soybean plant tolerant to glyphosate herbicide. The resulting plant has an improved yield potential linked to the presence of SEQ ID NO: 9. The method is defined solely by the technical process step of introducing SEQ ID NO: 9 into the genome of the plant by transformation of plant cells with heterologous DNA, i.e. a genetic engineering step introducing heterologous DNA in plant cells. The board notes that the introduced trait is due directly to the expression of the inserted DNA and is not the result of a plant breeding method characterised by crossing and selection. Indeed, the method as claimed does not require nor define steps of mixing genes of plants by sexual crossing and subsequent selection of plants, either explicitly or implicitly.
49. Accordingly, the board is satisfied that the method of claim 3 is not of the type that the Enlarged Board of Appeal in its decisions G 2/07, supra, and G 1/08, supra, considered to fall under the exclusion of "essentially biological processes for the production of plants" pursuant to Article 53(b) EPC.
50. Rather, the board considers that the subject-matter of claim 3 is a method for the production of plants by means of genetic engineering techniques (in this case transformation), which involves laboratory techniques essentially different from breeding methods and which as such have been accepted in the case law to be patentable (see e.g. decisions T 356/93, OJ EPO 1995, 545, and T 1054/96 of 6 December 2000, not published in the OJ; and decisions T 19/90 (OJ EPO 1990, 476) and T 315/03 (OJ EPO 2006, 15), the latter two referring to genetic engineering of animals).
51. The board also notes that there is nothing in decisions G 2/07 and G 1/08 (supra) which would indicate that the Enlarged Board of Appeal was of the opinion that this practice ought to be reconsidered as a result of its analysis of the process exclusion in Article 53(b) EPC.
52. Indeed, when considering the issues dealt with in Answer 3, the Enlarged Board of Appeal rather endorsed, that patent protection is available "for example, for genetic engineering techniques applied to plants which techniques differ profoundly from conventional breeding techniques as they work primarily through the purposeful insertion and/or modification of one or more genes in a plant (cf. T 356/93 supra). However, in such cases the claims should not, explicitly or implicitly, include the sexual crossing and selection process." (see decision G 2/07, supra, point 6.4.2.3, penultimate paragraph). It has already been established that the subject-matter of claim 3 neither requires nor defines crossing and selection steps, either explicitly or implicitly (see point 48. , above). The board notes furthermore the reference made by the Enlarged Board of Appeal to decision T 356/93, supra, in the quoted passage in which this board, in a different composition, came to the conclusion that a process for producing a particular plant which comprised transforming cells or tissues of said plant with heterologous DNA, the regeneration of plants therefrom and optionally the biological replication of these plants was not excluded from patentability by virtue of Article 53(b) EPC (see decision T 356/93, supra, point 40.1 of the reasons).
53. Furthermore, when considering patentability of plant breeding methods in the context of claims for methods including crossing and selection steps and additional steps of a technical nature and in contrast to the situation pertaining to processes containing a technical step which serves to enable or assist the performance of the steps of sexually crossing the whole genomes of plants or of subsequently selecting plants, the Enlarged Board of Appeal held that "[i]f, [...] such a process contains within the steps of sexually crossing and selecting an additional step of a technical nature, which step by itself introduces a trait into the genome or modifies a trait in the genome of the plant produced, so that the introduction or modification of that trait is not the result of the mixing of the genes of the plants chosen for sexual crossing, then the process is not excluded from patentability under Article 53(b) EPC" (see decision
G 2/07, supra, Headnote, Answer 3). This statement is considered by this board as confirming the patentability of methods for genetic engineering of plants (see decisions G 2/07 and G 1/08, supra).
54. In view of the above considerations, the board concludes that the subject-matter of claim 3 is not excluded from patentability under Article 53(b) EPC.

No comments:

Post a Comment

Do not use hyperlinks in comment text or user name. Comments are welcome, even though they are strictly moderated (no politics). Moderation can take some time (I don't get emails about comments to be approved).